首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10263篇
  免费   1401篇
  国内免费   5790篇
  2024年   16篇
  2023年   388篇
  2022年   444篇
  2021年   527篇
  2020年   651篇
  2019年   763篇
  2018年   710篇
  2017年   709篇
  2016年   676篇
  2015年   645篇
  2014年   646篇
  2013年   815篇
  2012年   663篇
  2011年   616篇
  2010年   535篇
  2009年   698篇
  2008年   640篇
  2007年   720篇
  2006年   643篇
  2005年   599篇
  2004年   529篇
  2003年   548篇
  2002年   430篇
  2001年   407篇
  2000年   353篇
  1999年   346篇
  1998年   266篇
  1997年   264篇
  1996年   273篇
  1995年   238篇
  1994年   229篇
  1993年   212篇
  1992年   170篇
  1991年   139篇
  1990年   169篇
  1989年   146篇
  1988年   127篇
  1987年   81篇
  1986年   76篇
  1985年   55篇
  1984年   53篇
  1983年   18篇
  1982年   88篇
  1981年   32篇
  1980年   28篇
  1979年   27篇
  1978年   8篇
  1977年   7篇
  1976年   8篇
  1958年   7篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
Bioaccessibility measurements have the potential to improve the accuracy of risk assessments and reduce the potential costs of remediation when they reveal that the solubility of chemicals in a matrix (e.g., soil) differs markedly from that in the critical toxicity study (i.e., the key study from which a toxicological or toxicity reference value is derived). We aimed to apply this approach to a brownfield site contaminated with chromium, and found that the speciation was CrIII, using a combination of alkaline digestion/diphenylcarbazide complexation and X-ray absorption near edge structure analysis. The bioaccessibility of Cr2O3, the compound on which a reference dose for CrIII is based, was substantially lower (<0.1%) than that of the CrIII in the soils, which was a maximum of 9%, giving relative bioaccessibility values of 13,000% in soil. This shows that the reference dose is based on essentially an insoluble compound, and thus we suggest that other compounds be considered for toxicity testing and derivation of reference dose. Two possibilities are CrCl3·6H2O and KCr(SO4)2·12H2O, which have been used for derivation of ecological toxicity reference values and are soluble at a range of dosing levels in our bioaccessibility tests.  相似文献   
62.
Qadar  Ali 《Plant and Soil》1998,203(2):269-277
Rice seedlings transplanted into sodic soil are exposed to an excess of potentially toxic ions as well as nutritional imbalance, both of which adversely affect their growth and yield. The present study was aimed to investigate the beneficial effects of fertilization with phosphorus and potassium on the plants at varying sodicity levels and also the response of genotypes with known variability in their tolerance to sodicity. In pot-house experiments during two seasons, the alleviating effects of P and K fertilization on three rice genotypes were examined at four sodicity levels. Seedlings of CSR13 and Jaya (both moderately tolerant to sodicity), died by 25–35 days after transplanting in sodic soils of pH 9.7–9.9 where Olsen's P was 12.5 and 14.8 kg/ha, respectively. However, there was no problem of survival or growth in these soils when Olsen's P was 17.6 and 20.8 kg/ha. Depletion in P from 12.0 kg to 10 kg resulted in some mortality of the seedlings even at pH 9.1. Sodicity tolerant genotype CSR10, did show some survival and growth even at pH 9.9 with Olsen's P at 14.8 kg/ha (without P fertilization) which suggests that differences in tolerance to sodicity which exist at genotypic level are not masked by low P. None of the three genotypes showed any survival problem at pH 8.0 and 8.1 with Olsen's P at 8.5 and 8.7 kg/ha, respectively. Seedlings in P fertilized sodic soils not only produced significantly more new roots but also higher root biomass than those in unfertilized sodic soils and these roots seem to have some control on Na uptake as reflected by low Na concentration in the shoots. Thus, P fertilization not only improved P and K status of plants but also reduced the concentration of potentially toxic Na ions in shoots, resulting in better survival, growth and yield. Although fertilization with K alone did improve shoot K content, it had no significant effect on reducing Na. So the mortality of the seedlings or grain yield in K fertilized sodic soils was as good as in control and this could be explained on the basis of lack of any significant difference in Na concentrations in shoots between these two treatments.  相似文献   
63.
64.
Centaurea maculosa (Lam.) (spotted knapweed) reduces wildlife and livestock habitat biodiversity and increases erosion. Nutrient availability to plants may be used to accelerate succession away from spotted knapweed. Early‐successional plant communities often have high nutrient availability, whereas late‐successional communities are often found on lower nutrient soils. We hypothesized that removal of nutrients would change the competitive advantage from spotted knapweed to Pseudoroegneria spicatum (bluebunch wheatgrass) (late seral). In two addition series matrices, background densities of Secale cereale (annual rye) and Elymus elimoides (bottlebrush squirreltail) (3,000 seeds/m2) were used to remove nutrients from the soil. In another set of addition series matrices, nitrogen (33 kg/ha) or phosphorus (33 kg/ha) were added to the soil. Nutrient analysis of soil and vegetation indicated that annual rye and bottlebrush squirreltail reduced nutrient availability in soils. In another matrix, neither a background density nor nutrients were added. Data were fit into Watkinson's curvilinear model to determine the competitive relationship between bluebunch wheatgrass and spotted knapweed. This allowed comparison of the equivalence ratios (C) generated from each addition series. The C parameters are the per‐plant equivalent of bluebunch wheatgrass or spotted knapweed and can be interpreted as the ratio of intra‐to‐interspecific competition. The C parameters are also the equivalence ratio of the number of spotted knapweed it takes to have equivalent effect on bluebunch wheatgrass or the number of bluebunch wheatgrass having the equivalent effect on spotted knapweed. Without nutrient manipulation, spotted knapweed was more competitive than bluebunch wheatgrass. The C for bluebunch wheatgrass was 0.17, indicating that 0.17 knapweed plants were competitively equivalent to one wheatgrass. Annual rye changed the competitive balance in favor of bluebunch wheatgrass (C = 9.9). Addition of nitrogen, phosphorus, or the mid‐seral species did not change the competitive relationship between the two species. This preliminary study suggests that succession from spotted knapweed to late‐seral bluebunch wheatgrass community may be accelerated by altering resource availability.  相似文献   
65.
Melon seedlings (Cucumis melo L. cv.Galia) were grown hydroponically to study the effect of salinity (80 mmol/LNaCl) on phosphate (Pi) uptake and translocation at two levels of Pi (25 μmol/L and 1 mmol/L). Net uptake rates of Pi were determined by depletionof the medium and by plant content. Salinity decreased Pi uptake at low Pi (high affinity uptake mechanism), 25 μmol/L, although no specific competitive inhibition of Pi uptake by Cl was observed. When plants were grown with high Pi (1 mmol/L), the uptake of Pi through the low affinity system was increased by 80 mmol/L NaCl. Salinity also reduced the phosphorus flux, as Pi, through the xylem. It is hypothesised that high levels of NaCl decrease the mobility of Pi stored in vacuoles, and as a result, inhibit export from this storage compartment to other parts of the plant.  相似文献   
66.
Currently, heavy metal (HM) contamination in greenhouse soils is a significant concern due to the rapid expansion of greenhouse agriculture. However, it is difficult to accurately assess HM pollution in greenhouse soils in China due to the lack of local geochemical baseline concentrations (GBCs) or corresponding background values. In the present study, the GBCs of HMs in Dongtai, a representative greenhouse area of China, were established from subsoils using cumulative frequency distribution (CFD) curves. The pollution levels of HMs and potential ecological risks were investigated using different quantitative indices, such as geo-accumulation index (Igeo), pollution index (PI), pollution load index (PLI) and ecological risk index (RI), based on these regional GBCs. The total concentrations of six metals (Cd, Cr, Cu, Ni, Pb and Zn) in surface soils were determined and shown to be lower than the concentrations reported in other greenhouse regions of China. The GBCs of Cd, Cr, Cu, Ni, Pb and Zn were 0.059–0.092, 39.20–54.50, 12.52–15.57, 20.63–23.26, 13.43–16.62 and 43.02–52.65 mg kg−1, respectively. Based on this baseline criterion, Cd, Pb and Zn accumulated in the surface soils because they were present at concentrations higher than their baseline values. The soils were moderately polluted by Cd according to the Igeo values, and the PI results indicated that moderate Cd contamination was present in this area. The large variation of Igeo value of Cd revealed that Cd in this area was likely influenced by agricultural activities. The PLI showed that most of the study area was moderately polluted. However, an analysis of the RI showed that the investigated HMs had low ecological risks. Correlation analysis and principle component analysis suggested that the Cd, Pb and Zn in the greenhouse soils mainly originated from anthropogenic sources (agricultural activities, atmospheric deposition etc.), while Cr, Cu, and Ni originated from natural sources. The findings of this study illustrated the necessity of GBC establishment at the local scale to facilitate more accurate HM evaluation of greenhouse soils. It is advisable to pay more attention to Cd, which could cause environmental problems in the greenhouse system.  相似文献   
67.
Macrophomina phaseolina (Tassi) Goid. causes seedling blight, charcoal rot, leaf blight, stem and pod rot on over 500 plant species in different parts of the world. The pathogen survives as sclerotia formed in host tissues which are released into the soil as tissue decay. Low soil moisture is considered the more important predisposing factor for M. phaseolina-induced diseases than high temperature. The intensity of the disease on a crop is related to the population of viable sclerotia in the soil and abiotic factors. The influence of various management strategies in reducing the number of viable propagules of the pathogen in the soil has been studied in order to minimize the impact of the disease. Any management approach that reduces inoculum density in the soil may reduce disease incidence on the host. However, to reduce inoculum density, quantitative determination of viable propagules from soil is necessary in order to understand the effect of management strategies on the population dynamics of this pathogen. Considerable work has been done on organic amendments, changing crop sequences with tolerant crops, fumigants, herbicides and tillage in managing M. phaseolina populations in the soil and the resulting disease. Solarization has been used in controlling M. phaseolina in different countries where this pathogen is causing disease on economically valuable crops. However, this method of soil disinfestation was effective in eliminating viable populations at the top soil layer although by combining other approaches its effectiveness was improved at lower soil depth. Use of biological control agents with or without organic amendments or after solarization has emerged to be a practical management approach in the control of M. phaseolina. In this paper, an attempt has been made to review those research findings where the influence of various management approaches on survival of M. phaseolina mainly sclerotia have been investigated.  相似文献   
68.
69.
《植物生态学报》2018,42(11):1120
外来植物入侵对土壤氮循环和氮有效性的影响是入侵成功或进一步加剧的重要原因。通过对比相同研究地点入侵区域和无入侵区域的土壤原位氮状态差异, 探讨了外来植物入侵对土壤氮有效性的影响程度和生理生态学机制。基于107篇相关研究文献数据的整合, 发现植物入侵区域相对于无入侵区域土壤总氮、铵态氮、硝态氮、无机氮、微生物生物量氮含量显著增加, 增幅分别为(50 ± 14)%、(60 ± 24)%、(470 ± 115)%、(69 ± 25)%、(54 ± 20)%。土壤硝态氮含量增幅较大反映硝化作用增强, 这可能增加入侵植物硝态氮利用以及喜硝植物的共存。温带地区植物入侵后土壤的硝态氮含量增幅显著高于亚热带地区。固氮植物入侵后土壤的总氮和无机氮含量增幅均显著高于非固氮植物入侵。木本和常绿植物入侵后土壤的总氮含量增幅分别高于草本和落叶植物入侵; 而土壤铵态氮含量的增幅没有显著差异且与固氮入侵植物占比无明显关系; 然而硝态氮含量的增幅普遍较高且与固氮入侵植物占比显著正相关。外来入侵植物固氮功能以及凋落物质量和数量是影响土壤氮矿化和硝化过程的关键因素。该研究为理解外来植物入侵成功和加剧的机制以及入侵植物功能性状与土壤氮动态之间的关系提供了新的见解。  相似文献   
70.
ABSTRACT Porphyrophora (Hemiptera: Coccomorpha: Margarodidae) is a genus of soil‐inhabiting scale insects. The antennal sensilla and their innervation in the first‐instar nymphs of Porphyrophora sophorae were studied using light microscopy and scanning and transmission electron microscopy to understand the function of these sensilla and determine the sensillar innervation feature on these small antennae. The results show that the six‐segmented antennae of these nymphs have 20–23 sensilla which can be morphologically classified into seven types, for example, one Böhm's bristle (Bb), one campaniform sensillum (Ca), one Johnston's organ (Jo), 13–16 aporous sensilla trichodea (St), two coeloconic sensilla (Co), one straight multiporous peg (Mp1), and one curvy multiporous peg (Mp2). According to their function, these sensilla can be categorized into three categories: mechanoreceptors, that is, Bb, Ca, Jo, and St; thermo/hygroreceptors, that is, Co only; and chemoreceptors, that is, Mp1 and Mp2. The dendrites that innervate the Mp1, Mp2, and Co sensilla combine to form a large nerve tract (NT1) in the antennal lumen. Because NT1 extends through and out of the antenna, the somata of these neurons are present in the lymph cavity of the insect's head. The dendrites that innervate the mechanoreceptors form another nerve tract (NT2). The somata of these neurons are located inside the scape and pedicel. J. Morphol. 277:1631–1647, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号